3.443 \(\int \frac{x^8}{(8 c-d x^3)^2 (c+d x^3)^{3/2}} \, dx\)

Optimal. Leaf size=83 \[ \frac{64 c}{27 d^3 \left (8 c-d x^3\right ) \sqrt{c+d x^3}}-\frac{22}{81 d^3 \sqrt{c+d x^3}}-\frac{32 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{243 \sqrt{c} d^3} \]

[Out]

-22/(81*d^3*Sqrt[c + d*x^3]) + (64*c)/(27*d^3*(8*c - d*x^3)*Sqrt[c + d*x^3]) - (32*ArcTanh[Sqrt[c + d*x^3]/(3*
Sqrt[c])])/(243*Sqrt[c]*d^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0651967, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {446, 89, 78, 63, 206} \[ \frac{64 c}{27 d^3 \left (8 c-d x^3\right ) \sqrt{c+d x^3}}-\frac{22}{81 d^3 \sqrt{c+d x^3}}-\frac{32 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{243 \sqrt{c} d^3} \]

Antiderivative was successfully verified.

[In]

Int[x^8/((8*c - d*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

-22/(81*d^3*Sqrt[c + d*x^3]) + (64*c)/(27*d^3*(8*c - d*x^3)*Sqrt[c + d*x^3]) - (32*ArcTanh[Sqrt[c + d*x^3]/(3*
Sqrt[c])])/(243*Sqrt[c]*d^3)

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 89

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c - a*
d)^2*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d^2*(d*e - c*f)*(n + 1)), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^8}{\left (8 c-d x^3\right )^2 \left (c+d x^3\right )^{3/2}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x^2}{(8 c-d x)^2 (c+d x)^{3/2}} \, dx,x,x^3\right )\\ &=\frac{64 c}{27 d^3 \left (8 c-d x^3\right ) \sqrt{c+d x^3}}-\frac{\operatorname{Subst}\left (\int \frac{-24 c^2 d+9 c d^2 x}{(8 c-d x) (c+d x)^{3/2}} \, dx,x,x^3\right )}{27 c d^3}\\ &=-\frac{22}{81 d^3 \sqrt{c+d x^3}}+\frac{64 c}{27 d^3 \left (8 c-d x^3\right ) \sqrt{c+d x^3}}-\frac{16 \operatorname{Subst}\left (\int \frac{1}{(8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )}{81 d^2}\\ &=-\frac{22}{81 d^3 \sqrt{c+d x^3}}+\frac{64 c}{27 d^3 \left (8 c-d x^3\right ) \sqrt{c+d x^3}}-\frac{32 \operatorname{Subst}\left (\int \frac{1}{9 c-x^2} \, dx,x,\sqrt{c+d x^3}\right )}{81 d^3}\\ &=-\frac{22}{81 d^3 \sqrt{c+d x^3}}+\frac{64 c}{27 d^3 \left (8 c-d x^3\right ) \sqrt{c+d x^3}}-\frac{32 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{243 \sqrt{c} d^3}\\ \end{align*}

Mathematica [A]  time = 0.0880438, size = 71, normalized size = 0.86 \[ \frac{2 \left (\frac{3 \left (8 c+11 d x^3\right )}{\left (8 c-d x^3\right ) \sqrt{c+d x^3}}-\frac{16 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{\sqrt{c}}\right )}{243 d^3} \]

Antiderivative was successfully verified.

[In]

Integrate[x^8/((8*c - d*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

(2*((3*(8*c + 11*d*x^3))/((8*c - d*x^3)*Sqrt[c + d*x^3]) - (16*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/Sqrt[c]))
/(243*d^3)

________________________________________________________________________________________

Maple [C]  time = 0.016, size = 926, normalized size = 11.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x)

[Out]

-2/3/d^3/(d*x^3+c)^(1/2)+16*c/d^2*(2/27/d/c/((x^3+1/d*c)*d)^(1/2)+1/243*I/d^3/c^2*2^(1/2)*sum((-d^2*c)^(1/3)*(
1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(
-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)
))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^
2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/
d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),-1/18/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2
/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)
^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c)))+64*c^2/d^2*(-2/243/d/c^2/((x^3+1/d*
c)*d)^(1/2)-1/243/d/c^2*(d*x^3+c)^(1/2)/(d*x^3-8*c)-1/1458*I/d^3/c^3*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+
1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(
1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(
1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c
)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1
/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),-1/18/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_
alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*
3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.13018, size = 495, normalized size = 5.96 \begin{align*} \left [\frac{2 \,{\left (8 \,{\left (d^{2} x^{6} - 7 \, c d x^{3} - 8 \, c^{2}\right )} \sqrt{c} \log \left (\frac{d x^{3} - 6 \, \sqrt{d x^{3} + c} \sqrt{c} + 10 \, c}{d x^{3} - 8 \, c}\right ) - 3 \,{\left (11 \, c d x^{3} + 8 \, c^{2}\right )} \sqrt{d x^{3} + c}\right )}}{243 \,{\left (c d^{5} x^{6} - 7 \, c^{2} d^{4} x^{3} - 8 \, c^{3} d^{3}\right )}}, \frac{2 \,{\left (16 \,{\left (d^{2} x^{6} - 7 \, c d x^{3} - 8 \, c^{2}\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{3 \, c}\right ) - 3 \,{\left (11 \, c d x^{3} + 8 \, c^{2}\right )} \sqrt{d x^{3} + c}\right )}}{243 \,{\left (c d^{5} x^{6} - 7 \, c^{2} d^{4} x^{3} - 8 \, c^{3} d^{3}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x, algorithm="fricas")

[Out]

[2/243*(8*(d^2*x^6 - 7*c*d*x^3 - 8*c^2)*sqrt(c)*log((d*x^3 - 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c))
- 3*(11*c*d*x^3 + 8*c^2)*sqrt(d*x^3 + c))/(c*d^5*x^6 - 7*c^2*d^4*x^3 - 8*c^3*d^3), 2/243*(16*(d^2*x^6 - 7*c*d*
x^3 - 8*c^2)*sqrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) - 3*(11*c*d*x^3 + 8*c^2)*sqrt(d*x^3 + c))/(c*d^5*
x^6 - 7*c^2*d^4*x^3 - 8*c^3*d^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8/(-d*x**3+8*c)**2/(d*x**3+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.17336, size = 90, normalized size = 1.08 \begin{align*} \frac{32 \, \arctan \left (\frac{\sqrt{d x^{3} + c}}{3 \, \sqrt{-c}}\right )}{243 \, \sqrt{-c} d^{3}} - \frac{2 \,{\left (11 \, d x^{3} + 8 \, c\right )}}{81 \,{\left ({\left (d x^{3} + c\right )}^{\frac{3}{2}} - 9 \, \sqrt{d x^{3} + c} c\right )} d^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x, algorithm="giac")

[Out]

32/243*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*d^3) - 2/81*(11*d*x^3 + 8*c)/(((d*x^3 + c)^(3/2) - 9*sqr
t(d*x^3 + c)*c)*d^3)